Forecasting low voltage distribution network demand profiles using a pattern recognition based expert system
نویسنده
چکیده
The advent of distributed renewable energy supply sources and storage systems has placed a greater degree of focus on the operations of the Low Voltage (LV) electricity distribution network. However, LV networks are characterised by having much higher variability in time series demand meaning that modelling techniques solely relying on iterative forecasts to produce a next day demand profile forecast are insufficient. To cater for the complexity of LV network demand, a novel hybrid expert system comprised of three modules, namely, correlation clustering, discrete classification neural network, and a post-processing procedure was developed. The system operates by classifying a set of key variables associated with a future day and refining a recalled historical demand profile as the forecast. The expert system exhibited high hindcast accuracy when trained with a residential LV transformer’s demand data with R values ranging from 0.86 to 0.87 and MAPE ranging from 11% to 12% across the three phases of the network. Under simulated real world conditions the R statistic reduced slightly to 0.81-0.84 and the MAPE increased to 12.513.5%. Future work will involve integrating the developed expert system for forecasting next day demand in an LV network into a comprehensive distributed energy resource management algorithm.
منابع مشابه
Application of Pattern Recognition Algorithms for Clustering Power System to Voltage Control Areas and Comparison of Their Results
Finding the collapse susceptible portion of a power system is one of the purposes of voltage stability analysis. This part which is a voltage control area is called the voltage weak area. Determining the weak area and adjecent voltage control areas has special importance in the improvement of voltage stability. Designing an on-line corrective control requires the voltage weak area to be determi...
متن کاملApplication of Pattern Recognition Algorithms for Clustering Power System to Voltage Control Areas and Comparison of Their Results
Finding the collapse susceptible portion of a power system is one of the purposes of voltage stability analysis. This part which is a voltage control area is called the voltage weak area. Determining the weak area and adjecent voltage control areas has special importance in the improvement of voltage stability. Designing an on-line corrective control requires the voltage weak area to be determi...
متن کاملOptimal reconfiguration of radial distribution system with the aim of reducing losses and improving voltage profiles using the improved lightning search algorithm
In this paper, a modified version of the lightning search algorithm is proposed in order to find the optimal reconfiguration of the switches and locate and determine the optimal capacity of distributed generation sources in the distribution feeder. The main optimization goals are to reduce ohmic losses and voltage deviations in the standard 33-bus and 94-node IEEE feeders. The simulation result...
متن کاملDifferent Methods of Long-Term Electric Load Demand Forecasting a Comprehensive Review
Long-term demand forecasting presents the first step in planning and developing future generation, transmission and distribution facilities. One of the primary tasks of an electric utility accurately predicts load demand requirements at all times, especially for long-term. Based on the outcome of such forecasts, utilities coordinate their resources to meet the forecasted demand using a least-co...
متن کاملShort Term Load Forecasting by Using ESN Neural Network Hamedan Province Case Study
Abstract Forecasting electrical energy demand and consumption is one of the important decision-making tools in distributing companies for making contracts scheduling and purchasing electrical energy. This paper studies load consumption modeling in Hamedan city province distribution network by applying ESN neural network. Weather forecasting data such as minimum day temperature, average day temp...
متن کامل